
Introduzione al Reinforcement Learning
Maurizio Parton, Università di Chieti-Pescara

23 maggio 2019

Acknowledgements, resources and links

Reinforcement Learning: An Introduction. Richard S. Sutton
and Andrew G. Barto, second edition, 2018.
UCL Course on RL, videos and slides. David Silver, 2015.
Tutorial: Introduction to Reinforcement Learning with
Function Approximation. Richard S. Sutton, 2016.
Implementation of Reinforcement Learning algorithms. Denny
Britz, GitHub project, 2016 (updated in 2018).

Both the organization and the content of the slides are extracted
from David Silver’s course and Richard S. Sutton tutorial.

http://incompleteideas.net/book/RLbook2018.pdf
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
https://www.youtube.com/watch?v=ggqnxyjaKe4
https://www.youtube.com/watch?v=ggqnxyjaKe4
https://github.com/dennybritz/reinforcement-learning

1 Introduction

2 The RL setup: problem, actors, MDP framework

3 Prediction and control via Bellman equations

4 Putting things together: Monte Carlo learning

5 Turning tables to approximation

Branches of Machine Learning

Machine
Learning

Supervised
Learning

Unsupervised
Learning

Reinforcement
Learning

RL characteristics

What is RL?
Agent-oriented learning: an agent learns by interacting with
an environment to achieve a goal.
The agent learns by trial and error, evaluating a (delayed)
feedback.
The kind of machine learning most like natural learning.
Learning that can tell for itself when it is right or wrong.

RL vs SL and UL
RL is not completely supervised: only reward.
RL is not completely unsupervised: there is reward.
Time matters: sequential data.
Time matters: actions change possible future.

Let’s play a game!

You are the learner
You live in a world where you can only do two things, called “1”
and “2”, and receiving a reward. . .

Examples

Real world applications of RL (original article)
Resources management in computer clusters.
Traffic light control.
Robotics.
Web system configuration.
Chemistry.
Personalized recommendations.
Bidding and advertising.

https://towardsdatascience.com/applications-of-reinforcement-learning-in-real-world-1a94955bcd12

Examples

Games
AlphaGo’s family.
StarCraft II. Very recent achievement, 19 Dec 2018.
Atari games. Very recent achievement, 28 Sep 2018.
TD-Gammon.

Enjoy few minutes of video
Atari:
https://www.youtube.com/watch?v=V1eYniJ0Rnk&vl=en

AlphaGo:
https://www.youtube.com/watch?v=8dMFJpEGNLQ

StarCraft: https://youtu.be/UuhECwm31dM

https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://openreview.net/forum?id=r1lyTjAqYX
https://www.youtube.com/watch?v=V1eYniJ0Rnk&vl=en
https://www.youtube.com/watch?v=8dMFJpEGNLQ
https://youtu.be/UuhECwm31dM

1 Introduction

2 The RL setup: problem, actors, MDP framework

3 Prediction and control via Bellman equations

4 Putting things together: Monte Carlo learning

5 Turning tables to approximation

The RL problem

RL main task
Decision problem: choose actions that maximize the return, i.e.
the total future reward.

Sequential decision making
Actions may have long term consequences.

To be greedy can be wrong
A financial investment (may take months to mature).
Refuelling a helicopter (might prevent a crash in several
hours).
Blocking opponent moves (might help winning chances many
moves from now).

The big picture: environment and agent

A never-ending loop
. . . we (the agent) receive
Rt and observe St . . .
. . . and thus we decide to
do action At . . .
. . . and because of our
action At , the
environment send us a
reward Rt+1 and a new
state, that we observe as
St+1. . .

The building block: state, action, probability, reward

S0 = u

initial state S1 = v final state

S1 = w final state

action A0 = a

Pa
uv = p(u, a, v) = 0.7
Ra

uv = r(u, a, v) = +3

Pa
uw = p(u, a, w) = 0.3
Ra

uw = r(u, a, w) = −1

The building block: state, action, probability, reward

S0 = u

initial state S1 = v final state

S1 = w final state

action A0 = a

0.7, +3

0.3,−1

The MDP originating our game

A

1

2

B

1

2

0.8, +10 0.2, +3

0.1, +2 0.9,−19

0.1, +39

0.9, +42

0.9, +19

0.1,−2

What can we do?
We control only the actions! We are not in control of the
environment probabilities and rewards (the model)!

Markov Decision Process: MDP

Markov decision process data
A set of states S and a set of actions A.
For each state s ∈ S and action a ∈ A, a probability
distribution p(·|s, a) over S × R.
A discount factor γ.

Distribution model
The probability p is called the distribution model of the MDP.

From now on, assume that S and A are finite, and γ = 1.

Markov Decision Process: MDP

Distribution model
The probability distribution p of the MDP gives the next state
and reward:

p(s ′, r |s, a) = Pr(St+1 = s ′,Rt+1 = r |St = s,At = a).

Given a state s, an action a ∈ A will take to a state s ′ with
probability:

Pa
ss′ = p(s ′|s, a) = Pr(St+1 = s ′|St = s,At = a).

Thus, we have a transition matrix Pa for each action a.
Given a state s, an action a ∈ A will give an average reward:

Ra
s = E[Rt+1|St = s,At = a].

Thus, we have an average reward vector Ra for each action a.

Example

A

1

2

B

1

2

0.8, +10 0.2, +3

0.1, +2 0.9,−19

0.1, +39

0.9, +42

0.9, +19

0.1,−2

= distribution model

Decisions: S → A

Where are the decisions?
In any state s, the agent must choose between available
actions a.
When choosing a from s, the environment answers s ′ with
probability Pa

ss′ . Environment decision.
The agent behaviour is given by probabilities π(a|s): ”how
likely I’m going to choose a from s?”. Agent decision.

Definition
A policy π is a probability distribution over actions given states:

π(a|s) = Pr(At = a|St = s)

inserire immagini di policy deterministiche (tabelle?)
fare esempio morra cinese per policy stocastica

A uniform stochastic policy

A

1

2

B

1

2

0.5

0.5

0.8, +10 0.2, +3

0.1, +2 0.9,−19

0.5

0.5

0.1, +39

0.9, +42

0.9, +19

0.1,−2

What can we do?
At every step, we choose the action according to the probability.

A uniform stochastic policy, tabular representation

A [0.5,0.5]
B [0.5,0.5]

Tabular representation
Every line in the table corresponds to a state.

A deterministic policy

A

1

2

B

1

2

0.8, +10 0.2, +3

0.1, +2 0.9,−19

0.1, +39

0.9, +42

0.9, +19

0.1,−2

Question
What can you say about this policy?

A deterministic policy, tabular representation

A 1
B 2

Tabular representation
Every line in the table corresponds to a state.

How much are states and actions worth?

Definition
The total return Gt at time t is

Gt = Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + · · · =
+∞∑
k=0

γkRt+1+k

Definition: state-value function
The state-value function vπ(s) for a MDP is the return we can
expect to accumulate starting from state s, following the policy π:

vπ(s) = Eπ[Gt |St = s]

A deterministic policy

A

1

2

B

1

2

0.8, +10 0.2, +3

0.1, +2 0.9,−19

0.1, +39

0.9, +42

0.9, +19

0.1,−2

Example: value for the optimal policy π∗

0.1 · 2v∗(A) + 0.9 · (−19)v∗(B)

A deterministic policy

A

1

2

B

1

2

0.8, +10 0.2, +3

0.1, +2 0.9,−19

0.1, +39

0.9, +42

0.9, +19

0.1,−2

Iterative, infinite computation for v∗ – can you spot a problem?

0.1 · 2[0.1 · 2v∗(A) + 0.9 · (−19)v∗(B)] + 0.9 · (−19)(0.9 · 42v∗(A) + 0.1 · 39v∗(B))

How much are states and actions worth?

Definition
The total return Gt at time t is

Gt = Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + · · · =
+∞∑
k=0

γkRt+1+k

Definition: action-value function
The action-value function qπ(s, a) for a MDP is the return we can
expect to accumulate starting from a state s, choosing action a,
and then following the policy π:

qπ(s, a) = Eπ[Gt |St = s,At = a]

What is the best value for states and actions?

Definition
The optimal state-value function v∗ is the maximum state-value
over all policies:

v∗(s) = max
π

vπ(s)

Definition
The optimal action-value function q∗ is the maximum action-value
over all policies:

q∗(s, a) = max
π

qπ(s, a)

Definition
Any policy obtaining optimal state-value or optimal action-value is
a optimal policy: π∗ is a optimal policy if

qπ∗ = q∗ or vπ∗ = v∗

RL in short

Optimal policy
Our aim is to find a policy π that, for each state s, obtains the
best vπ(s). That is, our aim is to find the optimal policy π∗.

The prediction problem in RL
Forecast the future: can you say from each state how much will be
your return? Policy evaluation step: π E→ vπ or π E→ qπ.

The control problem in RL
Change the future: can you find a different policy that will give
you a better return? Policy improvement step: vπ

I→ π′.

RL in short

Finding the optimal policy: policy iteration step
Iteration of policy evaluation and policy improvement gives a
sequence of monotonically improving policies and value functions:

π0
E→ vπ0

I→ π1
E→ vπ1

I→ · · · I→ π∗
E→ vπ∗

finite MDP ⇒ finite number of policies ⇒ converge in finite steps

RL in short: policy iteration

RL in short: generalized policy iteration

RL in short: GPI with partial evaluation of q

Partial policy evaluation: Q ∼ qπ.
Any policy improvement algorithm.

1 Introduction

2 The RL setup: problem, actors, MDP framework

3 Prediction and control via Bellman equations

4 Putting things together: Monte Carlo learning

5 Turning tables to approximation

Bellman equations

Recursive formula for return
The total return satisfies Gt = Rt+1 + γGt+1.

Theorem: Bellman equation for vπ

The state-value function satisfy the following recursive formula:

vπ(s) =
∑
a∈A

π(a|s)

Ra
s + γ

∑
s′∈S
Pa

ss′vπ(s ′)


Theorem: Bellman equation for qπ

The action-value function satisfy the following recursive formula:

qπ(s, a) = Ra
s + γ

∑
s′∈S
Pa

ss′
∑

a′∈A
π(a′|s ′)(qπ(s ′, a′))

Bellman equations

Recursive formula for return
The total return satisfies Gt = Rt+1 + γGt+1.

Theorem: Bellman equation for vπ

The state-value function satisfy a linear recursive formula:

vπ(s) = f (vπ(s ′))

Theorem: Bellman equation for qπ

The action-value function satisfy a linear recursive formula:

qπ(s, a) = f (qπ(s ′, a′))

Bellman equations

Recursive formula for return
The total return satisfies Gt = Rt+1 + γGt+1.

Theorem: Bellman equation for vπ

The state-value function satisfy a linear fixed-point formula:

vπ = f (vπ)

Theorem: Bellman equation for qπ

The action-value function satisfy a linear fixed-point formula:

qπ = f (qπ)

Bellman optimality equations

Recursive formula for return
The total return satisfies Gt = Rt+1 + γGt+1.

Theorem: Bellman optimality equation for v∗
The optimal state-value function satisfy the following recursive
formula:

v∗(s) = max
a

Ra
s + γ

∑
s′∈S
Pa

ss′v∗(s ′)


Theorem: Bellman optimality equation for q∗
The optimal action-value function satisfy the following recursive
formula:

q∗(s, a) = Ra
s + γ

∑
s′∈S
Pa

ss′ max
a′

(q∗(s ′, a′))

Bellman optimality equations

Recursive formula for return
The total return satisfies Gt = Rt+1 + γGt+1.

Theorem: Bellman optimality equation for v∗
The optimal state-value function satisfy a non linear recursive
formula:

v∗(s) = f (v∗(s ′))

Theorem: Bellman optimality equation for q∗
The optimal action-value function satisfy a non linear recursive
formula:

q∗(s, a) = f (q∗(s ′, a′))

Bellman optimality equations

Recursive formula for return
The total return satisfies Gt = Rt+1 + γGt+1.

Theorem: Bellman optimality equation for v∗
The optimal state-value function satisfy a non linear fixed-point
formula:

v∗ = f (v∗)

Theorem: Bellman optimality equation for q∗
The optimal action-value function satisfy a non linear fixed-point
formula:

q∗ = f (q∗)

Prediction: policy evaluation

Problem: evaluate a given policy π
Solution: iterative application of Bellman (expectation) equation.

How to do it
Start from any v0.
Given vk , use Bellman equation as a definition for vk+1.
Stop when you like it.

Iterative policy evaluation for estimating V ∼ vπ

Input: Policy π to be evaluated.
Parameter: Threshold θ > 0 determining accuracy of

estimation.
Output: Estimate V of vπ.
Initialize V (s), for all s ∈ S, arbitrarily except V (final) = 0.
do

∆← 0
for s ∈ S do

v ← V (s)
V (s)←

∑
a∈A π(a|s) (Ra

s + γ
∑

s′∈S Pa
ss′V (s ′))

∆← max(∆, |v − V (s)|)
end

while ∆ > θ

Policy evaluation example: gridworld

Undiscounted episodic MDP: 14 nonterminal states
1, . . . , 14, one terminal state (shown twice as),
four actions →,←, ↑, ↓.
Actions leading out of the grid leave state
unchanged.
Reward is −1 until the terminal state is reached.
Agent follows uniform random policy: π(·|·) = 0.25.

Exercise
Compute the first step of iterative evaluation of vπ.

Policy evaluation example: gridworld

Policy evaluation example: gridworld

Control: policy improvement

We have (we know how to compute) the value vπ. Then?
Improve the policy by acting greedily with respect to vπ:

π′(s) = argmax
a∈A

Ra
s + γ

∑
s′∈S
Pa

ss′vπ(s ′)


Rationale
No need to follow the policy if we know that a certain action is
better than the others.

Definition
We say that π′ is the greedy policy with respect to π.

Putting things together: policy iteration

Modified policy iteration

Exercise
Can policy iteration be improved? Hint: look what happens in the
gridworld example.

Policy evaluation

v0 → v1 → · · · → vπ

can be stopped before vπ is reached.
Stopping condition (for instance, when the max error is below
a threeshold), or stop after k iterations.
In gridworld k = 3 gives optimal policy.
Extreme case: stop evaluation after one iteration (called value
iteration).

Value iteration: partial evaluation of vπ

Partial policy evaluation: V ∼ vπ.
Any policy improvement algorithm.

Control via Bellman optimality equations
Question
Assuming you know the optimal state-value function v∗ or the
optimal action-value function q∗, how do you find an optimal
policy?

Answer for v∗
In a state s, choose the best a:

π∗(s) = argmax
a

(Ra
s +

∑
s′
Pa

ss′v∗(s ′))

Question
Do you see a problem in using v∗ to find π∗?

We need a
distribution model! And what happens if we have q∗ instead?

Answer for q∗: model-free solution
In a state s, choose the best a: π∗(s) = argmaxa∈A q∗(s, a) . If we
know q∗, we are done!

Control via Bellman optimality equations
Question
Assuming you know the optimal state-value function v∗ or the
optimal action-value function q∗, how do you find an optimal
policy?

Answer for v∗
In a state s, choose the best a:

π∗(s) = argmax
a

(Ra
s +

∑
s′
Pa

ss′v∗(s ′))

Question
Do you see a problem in using v∗ to find π∗? We need a
distribution model! And what happens if we have q∗ instead?

Answer for q∗: model-free solution
In a state s, choose the best a: π∗(s) = argmaxa∈A q∗(s, a) . If we
know q∗, we are done!

Control via Bellman optimality equations
Question
Assuming you know the optimal state-value function v∗ or the
optimal action-value function q∗, how do you find an optimal
policy?

Answer for v∗
In a state s, choose the best a:

π∗(s) = argmax
a

(Ra
s +

∑
s′
Pa

ss′v∗(s ′))

Question
Do you see a problem in using v∗ to find π∗? We need a
distribution model! And what happens if we have q∗ instead?

Answer for q∗: model-free solution
In a state s, choose the best a: π∗(s) = argmaxa∈A q∗(s, a) . If we
know q∗, we are done!

1 Introduction

2 The RL setup: problem, actors, MDP framework

3 Prediction and control via Bellman equations

4 Putting things together: Monte Carlo learning

5 Turning tables to approximation

Prediction with Monte Carlo

State-value function
Recall that the value function is the expected return:

vπ(s) = Eπ[Gt |St = s]

Without the model, how do you compute the expected return?

Law of large numbers
Monte Carlo: empirical mean instead of expected return. To learn
vπ(s), run episodes of experience from s under policy π:

S1 = s,A1,R2,S2,A2,R3, . . . ,RT , ST ∼ π

and then compute the empirical mean of all the total returns
Gt = Rt+1 + Rt+2 + · · ·+ RT obtained.

Prediction with Monte Carlo

Monte Carlo: learning from samples
MC learns from samples: knowledge of transitions Pa

ss′ and
rewards not needed.
MC learns from complete episodes: no bootstrapping.
MC estimates of s are independent on estimates of other
states s ′.
MC uses the law of large numbers: state-value=expected
value=empirical mean.

MC Prediction: towards a target through error

Incremental mean formula
The empirical mean Vk of a sequence G1,G2, . . . ,Gk can be
computed incrementally:

Vk = Vk−1 + 1
k (Gk − Vk−1)

Rewording the incremental mean formula
Vk is obtained going from Vk−1 towards a target Gk . The quantity
“target − previous value” is called error:

Vk = Vk−1 + αk · error = Vk−1 + αk ·∆

MC prediction, different versions

Incremental updates MC algorithm
The incremental formula can be used to update V (s) incrementally
after episode S1,A1,R2, . . . ,ST . For each state St with return Gt :

N(St)← N(St) + 1

V (St)← V (St) + 1
N(St)(Gt − V (St))

Constant-α MC algorithm
If the problem is non-stationary, we can use a running mean, giving
less and less importance to old episodes:

V (St)← V (St) + α(Gt − V (St))

First-visit MC, incremental updates, for estimating V ∼ vπ

Input: Policy π to be evaluated.
Initialize: V (s) ∈ R arbitrarily; N(s)← 0, for all s ∈ S.
while True do

Generate an episode following π:
S0,A0,R1,S1,A1,R2, . . . ,ST−1,AT−1,RT

G ← 0
for t = T − 1,T − 2, . . . , 0 do

G ← γG + Rt+1
if St ∈ {S0, S1, . . . ,St−1} then

next t
else

N(St)← N(St) + 1
V (St)← V (St) + 1

N(St) (G − V (St))
end

end
end

First-visit constant α MC prediction, for estimating V ∼ vπ

Input: Policy π to be evaluated.
Parameter: Learning rate α > 0.
Initialize: V (s) ∈ R arbitrarily.
while True do

Generate an episode following π:
S0,A0,R1,S1,A1,R2, . . . ,ST−1,AT−1,RT

G ← 0
for t = T − 1,T − 2, . . . , 0 do

G ← γG + Rt+1
if St ∈ {S0, S1, . . . ,St−1} then

next t
else

V (St)← V (St) + α(G − V (St))
end

end
end

MC control: General Policy Iteration with Q-value

MC policy evaluation: Q = qπ.
Policy improvement: greedy policy improvement, does it work?

Greedy is not always good

Which bandit?
You played 2 times each. Reward(left)=0, reward(center)=7,
reward(right)=10. Which one next? Is the greedy policy correct?

ε-greedy policy improvement

Exploration-exploitation dilemma
Since we are using the law of large numbers, we need to be sure
that every state is visited infinite times: we need to explore states
that have not been visited enough. But we would also like to
exploit states with high values!

Solution: try all actions eventually
Choose the greedy action quite often:

π′(a∗|s) =
{

1− ε if a∗ = argmaxa Qπ(s, a)
what is left otherwise

This is called ε-greedy improvement of π.

GPI with Q-value, ε-greedy improvement, episode based

MC policy evaluation episode based: Q ∼ qπ.
Policy improvement: ε-greedy policy improvement.

Enjoyable videos

Playing Atari Breakout
https://www.youtube.com/watch?v=_LEthduIbtk

Learning to walk
https://www.youtube.com/watch?v=gn4nRCC9TwQ

https://www.youtube.com/watch?v=_LEthduIbtk
https://www.youtube.com/watch?v=gn4nRCC9TwQ

1 Introduction

2 The RL setup: problem, actors, MDP framework

3 Prediction and control via Bellman equations

4 Putting things together: Monte Carlo learning

5 Turning tables to approximation

Large-scale problems

Real life problems can be very large
Backgammon: 1020 states.
Computer Go: 10170 states.
Starcraft: more than 101685.
Helicopter: continuous state space.
Protein folding problem.

Tabular methods doesn’t work
With methods seen up to now, we need a lookup table storing
V (s) (dimension |S|) or Q(s, a) (dimension |S||A) elements.
There are too many states and/or actions to store in memory.
Assuming you can store a large table, it is too slow to learn
the value of each state individually.
Need to scale up model-free RL technique.

https://deepmind.com/blog/alphafold/

Large scale problems

Solution for large MDP
Use an approximation q̂(s, a,w) ∼ qπ(s, a), where w ∈ Rd .
Update w instead of the table: the dimension of the problem
becomes d << |S|. Use RL to update w.
Try to make the approximation generalize to unseen states.

Large scale problems

Standard approximators
Linear combination of features (Deep Blue, 8000 binary
features).
Neural network (AlphaGo family).

These are differentiable approximators: needed for gradient descent
training.

RL as supervised learning

state → update
All prediction methods: estimated value q of pair s, a shifts toward
an update target u:

qk+1(s, a) = qk(s, a) + α(u − qk(s, a)).

Idea
Use s, a 7→ u as training data for supervised learning! For instance,
the MC update rule is St ,At 7→ Gt .

RL as supervised learning

Loss function on single example (St ,At)
1
2(q(St ,At)− q̂(St ,At ,w))2

MC update rule for parameters w of q̂(s, a,w)
We are estimating q(St ,At) with Gt , thus the gradient descent
gives:

w← w + α(Gt − q̂(St ,At ,w))∇(q̂(St ,At ,w))

Policy iteration with approximation

Approximate policy evaluation time-step based: q̂(·, ·,w) ∼ qπ.
Policy improvement: ε-greedy policy improvement. Poor
convergence results!

Convergence issues: the deadly triad

Deadly triad
Instability and divergence can, and usually will, arise whenever we
combine all of the following three elements:
Function approximation A powerful, scalable way of generalizing

from a state space much larger than the memory and
computational resources (e.g., neural networks).

Bootstrapping Update targets that include existing estimates (as
in Temporal Difference methods), rather than relying
exclusively on actual rewards and complete returns
(as in MC methods).

Off-policy training Training on a distribution of transitions other
than that produced by the target policy.

If any two elements of the deadly triad are present, but not all
three, then instability can be avoided.

Example: Blackjack

States: current sum (12-21), dealer’s showing card (ace-10),
usable ace (yes/no).
Actions: stick (stop receiving cards and terminate), twist
(take another card).
Reward for stick: +1, 0,−1 if sum of cards >,=, < sum of
dealer cards.
Reward for twist: −1 if sum of cards > 21, and terminate, 0
otherwise.
Transitions (dealer’s rule): automatically twist if sum of cards
< 12.

Exercise
Consider the policy that sticks if sum of cards ≥ 20, twist
otherwise. Compute its value function.

First-visit MC control episode based, for estimating π ∼ π∗

Parameter: Real number ε > 0.
Initialize: π = any ε-greedy policy.
Q(s, a) ∈ R arbitrarily.
returns(s, a)=empty list.
while True do

Generate an episode following π:
S0,A0,R1,S1,A1,R2, . . . ,ST−1,AT−1,RT

G ← 0
for t = T − 1,T − 2, . . . , 0 do

G ← γG + Rt+1
if St ∈ {S0, S1, . . . ,St−1} then

next t
else

returns(St ,At).append(G)
Q(St ,At)← average(returns(St ,At))
π ← greedy(π,St) (make the policy greedy for St)

end
end

end

Blackjack value function after MC prediction

Policy: stick if sum of cards ≥ 20, otherwise twist.

After 500000 episodes, MC prediction gives the correct value
function for this policy.

Blackjack optimal policy after MC learning

After 500000 episodes, MC learning computes Thorp’s Blackjack
strategy.

Licenza

È permesso copiare, distribuire e/o modificare questo
documento seguendo i termini della ”GNU Free
Documentation License”, versione 1.2 o ogni versione
successiva pubblicata dalla Free Software Foundation; senza
sezioni non modificabili, senza testi di prima di copertina e di
quarta di copertina. Una copia della licenza è disponibile alla
URL:
http://www.gnu.org/licenses/fdl-1.2-standalone.html

	Introduction
	The RL setup: problem, actors, MDP framework
	Prediction and control via Bellman equations
	Putting things together: Monte Carlo learning
	Turning tables to approximation

